NCERT Solutions for Class 7 Maths Chapter 10

Practical Geometry Class 7

Chapter 10 Practical Geometry Exercise 10.1, 10.2, 10.3, 10.4, 10.5 Solutions

Exercise 10.1 : Solutions of Questions on Page Number : 196
Q1 :
Draw a line, say $A B$, take a point C outside it. Through C, draw a line parallel to $A B$ using ruler and compasses only.

Answer :
The steps of construction are as follows.
(i)Draw a line $A B$. Take a point P on it. Take a point C outside this line. Join C to P.

(ii)Taking P as centre and with a convenient radius, draw an arc intersecting line $A B$ at point D and $P C$ at point E.

(iii) Taking C as centre and with the same radius as before, draw an arc FG intersecting PC at H .

(iv) Adjust the compasses up to the length of DE. Without changing the opening of compasses and taking H as the centre, draw an arc to intersect the previously drawn arc FG at point I.

(v) Join the points C and I to draw a line ' I.

This is the required line which is parallel to line $A B$.

Q2 :
Draw a line I. Draw a perpendicular to $/$ at any point on I. On this perpendicular choose a point $\mathrm{X}, 4 \mathrm{~cm}$ away from I. Through X, draw a line m parallel to I.

Answer :
The steps of construction are as follows.
(i) Draw a line I and take a point P on line I. Then, draw a perpendicular at point P .

(ii) Adjusting the compasses up to the length of 4 cm , draw an arc to intersect this perpendicular at point X . Choose any point Y on line I. Join X to Y .

(iii) Taking Y as centre and with a convenient radius, draw an arc intersecting / at A and XY at B .

(iv) Taking X as centre and with the same radius as before, draw an arc $C D$ cutting $X Y$ at E.

(v)Adjust the compasses up to the length of AB. Without changing the opening of compasses and taking E as the centre, draw an
arc to intersect the previously drawn arc $C D$ at point F.

(vi) Join the points X and F to draw a line m.

Line m is the required line which is parallel to line l.

Q3 :
Let I be a line and P be a point not on I. Through P, draw a line m parallel to I. Now join P to any point Q on I. Choose any other point R on m. Through R, draw a line parallel to $P Q$. Let this meet $/$ at S. What shape do the two sets of parallel lines enclose?

Answer:
The steps of construction are as follows.
(i)Draw a line / and take a point A on it. Take a point P not on $/$ and join A to P .

(ii) Taking A as centre and with a convenient radius, draw an arc cutting / at B and AP at C .

(iii)Taking P as centre and with the same radius as before, draw an arc $D E$ to intersect $A P$ at F.

(iv) Adjust the compasses up to the length of $B C$. Without changing the opening of compasses and taking F as the centre, draw an arc to intersect the previously drawn arc DE at point G.

(v)Join P to G to draw a line m. Line m will be parallel to line I.

(vi)Join P to any point Q on line l. Choose another point R on line m. Similarly, a line can be drawn through point R and parallel to PQ.

Let it meet line / at point S.
In quadrilateral PQSR, opposite lines are parallel to each other.
$P Q \| R S$ and $P R \| Q S$
Thus, the quadrilateral PQSR is a parallelogram.

Exercise 10.2 : Solutions of Questions on Page Number : 199
Q1 :
Construct $\triangle X Y Z$ in which $X Y=4.5 \mathrm{~cm}, Y Z=5 \mathrm{~cm}$ and $Z X=6 \mathrm{~cm}$.

Answer:

The rough figure of this triangle is as follows.

The required triangle is constructed as follows.
(i) Draw a line segment YZ of length 5 cm .

Y	5 cm

(ii) Point X is at a distance of 4.5 cm from point Y . Therefore, taking point Y as centre, draw an arc of 4.5 cm radius.

(iii) Point X is at a distance of 6 cm from point Z. Therefore, taking point Z as centre, draw an arc of 6 cm radius. Mark the point of intersection of the arcs as X. Join $X Y$ and $X Z$.

$X Y Z$ is the required triangle.

Q2 :
Construct an equilateral triangle of side 5.5 cm .

Answer :
An equilateral triangle of side 5.5 cm has to be constructed. We know that all sides of an equilateral triangle are of equal length.
Therefore, a triangle $A B C$ has to be constructed with $A B=B C=C A=5.5 \mathrm{~cm}$.
The steps of construction are as follows.
(i) Draw a line segment BC of length 5.5 cm .

B $\quad 5.5 \mathrm{~cm} \quad$ C
(ii) Taking point B as centre, draw an arc of 5.5 cm radius.
$\begin{array}{ll}\mathrm{B} & 5.5 \mathrm{~cm} \quad \mathrm{C}\end{array}$
(iii) Taking point C as centre, draw an arc of 5.5 cm radius to meet the previous arc at point A.

$\underset{\sim}{A}$

$B \quad 5.5 \mathrm{~cm} \quad$ C
(iv) Join A to B and C .

$A B C$ is the required equilateral triangle.

Q3 :
Draw $\triangle P Q R$ with $P Q=4 \mathrm{~cm}, Q R=3.5 \mathrm{~cm}$ and $P R=4 \mathrm{~cm}$. What type of triangle
is this?

Answer :
The steps of construction are as follows.
(i) Draw a line segment QR of length 3.5 cm .
Q $\quad 3.5 \mathrm{~cm} \quad \mathrm{R}$

ii) Taking point Q as centre, draw an arc of 4 cm radius.
(iii) Taking point R as centre, draw an arc of 4 cm radius to intersect the previous arc at point P.

$$
\frac{P}{\nsim}
$$

(iv) Join P to Q and R.

$\triangle P Q R$ is the required triangle. As the two sides of this triangle are of the same length $(P Q=P R)$, therefore, $\triangle P Q R$ is an isosceles triangle.

Q4 :
Construct $\triangle A B C$ such that $A B=2.5 \mathrm{~cm}, B C=6 \mathrm{~cm}$ and $A C=6.5 \mathrm{~cm}$. Measure $\angle B$.

Answer :

The steps of construction are as follows.
(i) Draw a line segment $B C$ of length 6 cm .

(ii) Taking point C as centre, draw an arc of 6.5 cm radius.
r

$\stackrel{A}{C}$
$B \quad 6 \mathrm{~cm}$
(iv) Join A to B and C.
iii) Taking point B as centre, draw an arc of radius 2.5 cm to meet the previous arc at point A.

$\triangle A B C$ is the required triangle. $\angle B$ can be measured with the help of protractor. It comes to 90°

Exercise 10.3 : Solutions of Questions on Page Number : 200
Q1 :
Construct $\triangle D E F$ such that $D E=5 \mathrm{~cm}, \mathrm{DF}=3 \mathrm{~cm}$ and $\mathrm{m}_{\angle} \mathrm{EDF}=90^{\circ}$.

Answer :

The rough sketch of the required $\triangle \mathrm{DEF}$ is as follows.

The steps of construction are as follows.
(i)Draw a line segment DE of length 5 cm .

D 5 cm E
(ii) At point D , draw a ray DX making an angle of 90° with DE .

(iii) Taking D as centre, draw an arc of 3 cm radius. It will intersect DX at point F .

(iv) Join F to $E . \triangle D E F$ is the required triangle.

Q2 :
Construct an isosceles triangle in which the lengths of each of its equal sides is
6.5 cm and the angle between them is 110°.

Answer :

An isosceles triangle $P Q R$ has to be constructed with $P Q=Q R=6.5 \mathrm{~cm}$. A rough sketch of the required triangle can be drawn as follows.

The steps of construction are as follows.
(i) Draw the line segment QR of length 6.5 cm .

Q $\quad 6.5 \mathrm{~cm} \quad \mathrm{R}$
(ii) At point Q, draw a ray QX making an angle 110° with QR .

(iii) Taking Q as centre, draw an arc of 6.5 cm radius. It intersects $Q X$ at point P.

(iv) Join P to R to obtain the required triangle PQR .

Q3 :
Construct $\triangle A B C$ with $B C=7.5 \mathrm{~cm}, A C=5 \mathrm{~cm}$ and $\mathrm{m} \angle \mathrm{C}=60^{\circ}$.

Answer :
A rough sketch of the required triangle is as follows.

The steps of construction are as follows.
(i) Draw a line segment BC of length 7.5 cm .

$$
\overline{\mathrm{B}} \quad 7.5 \mathrm{~cm} \quad \mathrm{C}
$$

(ii) At point C , draw a ray CX making 60° with BC .

(iv) Join A to B to obtain triangle $A B C$.

iii) Taking C as centre, draw an arc of 5 cm radius. It intersects $C X$ at point A.

Exercise 10.4 : Solutions of Questions on Page Number : 202
Q1 :
Construct $\triangle A B C$, given $m_{\angle A} A=60^{\circ}, m_{\angle} B=30^{\circ}$ and $A B=5.8 \mathrm{~cm}$.

Answer :
A rough sketch of the required $\triangle A B C$ is as follows.

The steps of construction are as follows.
(i)Draw a line segment $A B$ of length 5.8 cm .

www.ncrtsolutions.in
(ii)At point A, draw a ray $A X$ making 60° angle with $A B$.

(iii) At point B, draw a ray $B Y$, making 30° angle with $A B$.

(This is the required triangle $A B C$. point of intersection of these two rays.
iv) Point C has to lie on both the rays, $A X$ and $B Y$. Therefore, C is the

Q2 :
Construct $\triangle P Q R$ if $P Q=5 \mathrm{~cm}, \mathrm{~m} \angle P Q R=105^{\circ}$ and $m \angle Q R P=40^{\circ}$.
(Hint: Recall angle sum property of a triangle).

Answer :
A rough sketch of the required $\triangle P Q R$ is as follows.

www.ncrtsolutions.in

In order to construct $\triangle P Q R$, the measure of $\angle R P Q$ has to be calculated.
According to the angle sum property of triangles, \angle
$\mathrm{PQR}+\angle \mathrm{PRQ}+\angle \mathrm{RPQ}=180^{\circ}$
$105^{\circ}+40^{\circ}+\angle R P Q=180^{\circ}$
$145^{\circ}+\angle \mathrm{RPQ}=180^{\circ}$
$\angle \mathrm{RPQ}=180^{\circ}-145^{\circ}=35^{\circ}$
The steps of construction are as follows.
(i) Draw a line segment $P Q$ of length 5 cm .

(ii) At P , draw a ray PX making an angle of 35° with PQ .

(iii) At point Q , draw a ray QY making an angle of 105° with PQ .

(iv)Point R has to lie on both the rays, PX and QY . Therefore, R is the point of intersection of these two rays.

This is the required triangle $P Q R$.

Q3 :
Examine whether you can construct $\triangle D E F$ such that $E F=7.2 \mathrm{~cm}, \mathrm{~m} \angle \mathrm{E}=110^{\circ}$
and $m_{\angle} F=80^{\circ}$. Justify your answer.

Answer :

Given that,
$m \angle E=110^{\circ}$ and $m \angle F=80^{\circ}$
Therefore,
$m \angle E+m \angle F=110^{\circ}+80^{\circ}=190^{\circ}$
However, according to the angle sum property of triangles, we should obtain
$m \angle E+m \angle F+m \angle D=180^{\circ}$

Therefore, the angle sum property is not followed by the given triangle. And thus, we cannot construct $\triangle \mathrm{DEF}$ with the given measurements.

Also, it can be observed that point D should lie on both rays, EX and FY, for constructing the required triangle. However, both rays are not intersecting each other. Therefore, the required triangle cannot be formed.

Exercise 10.5 : Solutions of Questions on Page Number : 203
Q1 :
Construct the right angled $\triangle P Q R$, where $m \angle Q=90^{\circ}, Q R=8 \mathrm{~cm}$ and $P R=10 \mathrm{~cm}$.

Answer :

A rough sketch of $\triangle P Q R$ is as follows.

The steps of construction are as follows.
(i) Draw a line segment QR of length 8 cm .
Q $\quad 8 \mathrm{~cm} \quad \mathrm{R}$
(ii) At point Q , draw a ray QX making 90° with QR .

(iii) Taking R as centre, draw an arc of 10 cm radius to intersect ray QX at point P .

(iv) Join P to $R . \triangle P Q R$ is the required right-angled triangle.

Q2 :
Construct a right-angled triangle whose hypotenuse is 6 cm long and one of the legs is 4 cm long.

www.ncrtsolutions.in

Answer :

A right-angled triangle $A B C$ with hypotenuse 6 cm and one of the legs as 4 cm has to be constructed. A rough sketch of $\triangle A B C$ is as follows.

The steps of construction are as follows.
(i) Draw a line segment $B C$ of length 4 cm .
B $\quad 4 \mathrm{~cm} \quad$ C
(ii) At point B , draw a ray BX making an angle of 90° with BC .

(iii) Taking C as centre, draw an arc of 6 cm radius to intersect ray $B X$ at point A.

(iv) Join A to C to obtain the required $\triangle A B C$.

Q3 :
Construct an isosceles right-angled triangle $A B C$, where, $m_{\angle} A C B=90^{\circ}$ and $A C=6 \mathrm{~cm}$.

Answer :

In an isosceles triangle, the lengths of any two sides are equal.
Let in $\triangle A B C, A C=B C=6 \mathrm{~cm}$. A rough sketch of this $\triangle A B C$ is as follows.

The steps of construction are as follows.
(i) Draw a line segment $A C$ of length 6 cm .
C $\quad 6 \mathrm{~cm} \quad \mathrm{~A}$
(ii) At point C , draw a ray CX making an angle of 90° with AC .

(iii) Taking point C as centre, draw an arc of 6 cm radius to intersect $C X$ at point B.

(iv) Join A to B to obtain the required $\triangle A B C$.

